
BeagleBone Robotics
T Bleything, J Strawson 2014

1 Introduction

When embarking on a new robotics project, your first decision is usually to choose which embedded micro-
processor to use to control and communicate with your robot. We use the term "embedded microprocessor"
to refer to any one of the thousands of types of processors designed to be embedded into larger devices
and systems ranging from your microwave or television to jumbo jets. Obviously the amount of memory and
processing power required of the embedded processor will vary greatly depending on its use.

Most small robotics projects in the educational space will have fairly minimal processing requirements,
but will benefit greatly from having a wide variety of connectivity interfaces. This will allow a single embedded
system to be used on different projects with unique requirements and functions. For this reason, the following
text will focus on the use of the BeagleBone Black development board as it offers the power and functionality
of a full Linux-based operating system with a small form factor that is well-suited for robotics projects.

Here we will outline the usage of the BeagleBone Black as a robotics control unit and describe in detail
the most commonly used interfaces and techniques in the field of robotics prototyping.

1.1 Your BeagleBone’s Operating System

Unlike many cheap embedded development kits like Arduinos and PIC development boards, your Beagle-
Bone has enough flash storage and volatile RAM to support a full-featured operating system. Thanks to the
efforts of the BeagleBoard open-source community and Texas Instruments, your BeagleBone comes pre-
installed with a custom build of the Debian Linux operating system. In the context of your robotics project,
this means that it takes very little effort to allow your robot to support high-level functions such as networking,
file system management, and the execution of several programs at once.

Unlike popular 8-bit microcontrollers which have on the order of kilobytes of flash storage, you can store
many programs and projects on your BeagleBone at once. This accelerates your software development
process by allowing you to edit, compile, and test your programs while keeping your BealgeBone powered
on. Without an operating system, your embedded system would need to be flashed and restarted with each
code revision. Furthermore, your BeagleBone has the ability to drive an HDMI display and render a graphical
user interface. By connecting a USB keyboard andmouse, your BeagleBone can serve as a low-power home
desktop computer.

Just like your personal computer at home, you should cleanly power off your BeagleBone before discon-
necting power. This can be done with either the poweroff command or by momentarily pressing the power
button closest to the ethernet jack. Since the operating system is writing to the file system occationally in
the background, shutting down your BeagleBone properly will help prevent file system errors that will require
you to need to flash your BeagleBone.

Page 1

1.2 Flashing Your BeagleBone to a Clean Image

While your BeagleBone comes pre-flashed with the latest Debian image from the factory, it is sometimes a
good idea to flash back to a clean image if you are unsure of the state of your BeagleBone’s memory or just
want to ensure a clean start. Follow the steps on beagleboard.org/Getting+Started to create a microSD card
and flash the official BeagleBone Debian image to the on-board eMMC flash storage. All instructions and
code in this guide are tested on the 2014-05-14 release of Debian found at beagleboard.org/latest-images.

2 Connecting and Communicating With Your BeagleBone

One of the many benefits of having an operating system on your robot is that you can communicate with it
through standard network protocols in your own home without sophisticated telemetry systems. Typically,
mobile robots are used in a headless configuration, meaning without a graphical user interface. Therefore,
you must control your BeagleBone through network protocols instead of with a desktop environment rendered
by the BeagleBone. Luckily, we can still use another computer’s GUI when developing your BeagleBone.
We will call this your host computer while your BeagleBone will be the robot.

The first step when learning to use your BeagleBone is connecting through USB and getting a working
console open. This will allow you command-line access to your BeagleBone’s operating system that will let
you move forward to more sophisticated techniques like setting up an enthernet or WiFi connection.

2.1 Network over USB

A remarkably convenient method of getting a network connection with your BeagleBone while also powering
it is over a mini-USB cable. This is accomplished with a USB driver which generates a network interface when
your BeagleBone is connected, similar to an ethernet or WiFi interface. If you are using a major distribution
of Linux then the USB drivers to generate the network interface will probably load automatically when you
connect your BeagleBone over USB. A set of drivers and setup guide are available at the BeagleBoard
Getting Started page. Note that the windows drivers distributed on beagleboard.org are unsigned. Getting
Windows 8 to install unsigned drivers is annoying, so Jason Kridner provides us signed drivers here.

Connecting to your BeagleBone over a USB cable will probably remain your primary communication
technique. Optionally, you can connect to your BeagleBone through a home network over either an ethernet
or WiFi connection. We will cover these techniques later.

2.2 SSH

Once you have followed theGetting Started page linked above and installed the drivers, you are ready to "SSH
into" your BeagleBone. Secure Shell, or SSH, is a network protocol allowing a user to initiate a command line
session on the BeagleBone from a host computer. Mac and Linux operating systems generally come pre-
installed with an SSH client and server. This allows you to SSH into your BeagleBone from a local command
line application. For Windows users, we recommend the free and popular application PuTTY.

A convient feature of the USB network connection is that your BeagleBone will always be accessible at
the same IP address: 192.168.7.2, exemplified by the below image using PuTTy.

Page 2

http://www.beagleboard.org/getting-started
https://github.com/jadonk/beaglebone-getting-started/tree/sysco-ch-signed-drivers/Drivers/Windows
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

At this stage, you should be able to log into your BeagleBone for the first time with the default username
"root." Simply hit enter if prompted for a password.

If you can see a similar login screen to mine, then you have successfully "SSH’d into" your BeagleBone.
Now is good time to check the operating system version you have installed. You should use the 2014-05-14
Debian image if you intend to complete the Robotics Cape based exercises.

At this point you can interact with the command line just like any standard Linux operating system. If you
are not familiar with using a Linux command line, I suggest reviewing the following most commonly used
commands: ls, mkdir, rm, cd, nano, cat, echo, reboot, poweroff, make, gcc and top.

2.3 SFTP

We will not expect you to use command line file editors like nano or vim for writing long and complicated
robotics control programs. Instead, we can save time by editing files locally on a host computer with a
graphical interface and then sending the files back and forth to your BeagleBone with Secure File Transfer
Protocol, or SFTP. Linux and Mac computers provide the FTP command-line program out of the box and
there are many popular graphical FTP programs available. We recommend WinSCP for Windows users.

Page 3

http://winscp.net/eng/download.php

You should now try logging into your BeagleBone through an SFTP client at the same IP address you
used for SSH.

If this is successful, you should be presented with a complete file system starting with the /root folder.
This will be your main working directory. As you can see here, I have already put files and folders in my /root
directory. Yours may be empty if this is your first time logging into your BeagleBone.

You can now send folders, text files, source code, and any other sort of file back and forth through the
network.

Note that Windows operating systems place return carriage characters at the end of every new line in

Page 4

text documents as well as a newline character whereas Linux only uses newline characters. Stray return
carriage characters in files that you send to your BeagleBone can cause failures and should be avoided.
Some Windows text editors such as Notepad++ will allow you to convert a file between the two standards
with the end-of-line (EOL) conversion option. It is usually safest to create a new file with the command line
while SSH’d into your BeagleBone using a command line text editor like nano or vim, then copy it to your
computer for editing.

2.4 Ethernet

A more flexible way of acheiving a networking connection to your BeagleBone is by attaching it to a router
through its ethernet port much like a desktop computer. However, with no graphical user interface on your
BeagleBone, you must first discover the IP address of the BeagleBone before you can connect to it. This
can be done one of three ways after you have powered up your BeagleBone with a DC power source and an
ethernet connection.

1. Log into your network router’s control interface and look for a list of connected network devices. One
should appear with the hostname "beaglebone" with its corresponding IP address.

2. Attempt to connect using the hostname "beaglebone" directly. Note that this only works with routers
that have internal DNS servers for local machines. This is the same way you can connect to a website
knowing only the domain name.

3. In addition to an ethernet or wireless connection, you can plug in the USB cable to log into the Bea-
gleBone and achieve two simultaneous network connections. Through the USB connection, you can log
into 192.168.7.2 like before and ask the BeagleBone for the state of all network connections with the Linux
tool ifconfig. Below you will see the result of me logging into my BeagleBone with both a USB and ethernet
connection. You can see that my BeagleBone has two IP addresses. The familiar 192.168.7.2 address over
USB, and also 192.168.1.82 over ethernet. You can now close your SSH session and try logging back in
with the new network IP address to connect over USB.

root@beaglebone:~# ifconfig
eth0 Link encap:Ethernet HWaddr 90:59:af:82:b8:81

inet addr:192.168.1.82 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::9259:afff:fe82:b881/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:555 errors:0 dropped:0 overruns:0 frame:0
TX packets:125 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:71389 (69.7 KiB) TX bytes:16418 (16.0 KiB)
Interrupt:40

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

Page 5

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
usb0 Link encap:Ethernet HWaddr da:25:0d:36:09:69

inet addr:192.168.7.2 Bcast:192.168.7.3 Mask:255.255.255.252
inet6 addr: fe80::d825:dff:fe36:969/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:298 errors:0 dropped:0 overruns:0 frame:0
TX packets:111 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:58871 (57.4 KiB) TX bytes:25976 (25.3 KiB)

Two benefits of using an ethernet connection is that you can connect to multiple BeagleBones at once
and you are no longer thethered to your USB cable. However, you do need to supply a DC power source to
your BeagleBone either through the 5V input jack, the USB port, or with a cape that supplies DC power to
the BeagleBone’s VDD input pin.

2.5 WiFi

Thanks to the widely used and supported Debian operating system, your BeagleBone supports many USB
WiFi dongles straight out of the box. Start by powering off your BeagleBone, installing your WiFi dongle to
the USB host port, and then powering up your BeagleBone through the mini-USB port. Check that the drivers
and network interface loaded by using the ifconfig like bebore. Mine is called wlan1, yours might be wlan0.

root@beaglebone:~# ifconfig -a
wlan1 Link encap:Ethernet HWaddr 00:0c:13:09:1b:de
inet addr:192.168.1.12 Bcast:192.168.1.255 Mask:255.255.255.0

Now open the network config file for editing.

root@beaglebone:~# nano /etc/network/interfaces

Somewhere in this file will be an example entry that is commented out and looks similar to the one below.
Uncomment it and edit the SSID and password to match your network.

WiFi Example
auto wlan1
iface wlan1 inet dhcp

wpa-ssid "beaglebase"
wpa-psk "beaglebone"

Now restart your BeagleBone safely from the command line with the reboot command to make the
changes take effect. When your BeagleBone has booted back up, log in again through USB to check the
connection with the ifconfig utility. If all was successful your router should have assigned your BeagleBone
a unique IP address. You should write this down as this is the new IP address you will need to talk to your
BeagleBone wirelessly instead of the 192.168.7.2 address which is through USB. It is possible to SSH into

Page 6

your BeagleBone simultaneously through both the USB port and a wireless network.
To prevent you needing to remember the unique IP address of each device on a network, many routers

support the use of hostnames to identify devices as well as their IP address. Your BeagleBone defaults to a
hostname of "beaglebone". To change the hostname, edit the /etc/hostname file while logged in as the user
’root’ with your favorite command line text editor such as nano or over sftp.

root@beaglebone:~# nano /etc/hostname

2.6 Exercise: Hello World

Once you have successfully SSH’d into your BeagleBone through one of the above-listed networking options,
you have all you need to write and compile your first program. For this exercise we will walk through the
standard Hello World program to ensure you have a functioning toolkit which is the collection of libraries,
compilers, and editors necessary to develop software. Start by creating a new folder to put your project in.

root@beaglebone:~# cd /root/
root@beaglebone:~# mkdir hello
root@beaglebone:~# cd hello
root@beaglebone:~/hello#

Now create a new C file nammed helloworld.c

root@beaglebone:~/hello# nano helloworld.c

Paste or type in the following code.

#include <stdio.h>
int main(){

printf("Hello BeagleBone\n");
return 0;

}

Hit Ctrl-O to save and Ctrl-X to exit the nano program. Now compile your program with gcc and provide
the output file name matching the .c source file. If gcc returns with no errors or warning, execute the program
and see the result.

root@beaglebone:~/hello# gcc helloworld.c -o helloworld
root@beaglebone:~/hello# ./helloworld
Hello BeagleBone
root@beaglebone:~/hello#

Congratulations, you have your first BeagleBone program working!

Page 7

3 Capes

The expansion headers on your BeagleBone allow for accessory boards called Capes to be stacked on top
of your BeagleBone. You will be using a Robotics Cape for most of the exercises in this document. Much
like shields for the Arduino platform, BeagleBone capes allow you to add sensors and hardware specific to
your application.

3.1 Slots

Since multiple capes can be stacked on a single BeagleBone, each installed cape occupies a slot in the stack
of capes. This concept of a slot exists both in the physical position as well as in software. The BeagleBone
cape manager software keeps track of the installed capes and which slot they are in. Out of the box, you
will see that three virtual capes are loaded to enable EMMC flash memory and the HDMI interface. You can
check which capes are loaded with the cat command as shown below. Note that the device tree overlay files
can be loaded into cape slots without a physical cape needing to be installed.

root@beaglebone:~# cat /sys/devices/bone_capemgr.*/slots0: 54:PF---
1: 55:PF---
2: 56:PF---
3: 57:PF---
4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
6: ff:P-O-L Bone-Black-HDMIN,00A0,Texas Instrument,BB-BONELT-HDMIN

3.2 Exercise: Installing the Robotics Cape

To save you time, the Robotics Cape provides a single installation package which installs the device tree
overlay file and many useful libraries. Simply follow the instructions here. I suggest selecting no program to
run on boot if you are to proceed straight to the LED exercises in the next chapter. Note that the cape does
not have to be physically installed to run the installer and use the libraries.

root@beaglebone:~# cat /sys/devices/bone_capemgr.*/slots0: 54:PF---
1: 55:PF---
2: 56:PF---
3: 57:PF---
4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
5: ff:P-O-- Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
6: ff:P-O-- Bone-Black-HDMIN,00A0,Texas Instrument,BB-BONELT-HDMIN
7: ff:P-O-L Override Board Name,00A0,Override Manuf,SD-101C

If you are on an older Debian image such as 2014-04-23 then you will get an error from update-rc.d and
the auto-run bootscript will not work. However, other library functions and the device tree overlay will still

Page 8

http://strawsondesign.com/#!manual-install

function properly for this assignment. The proper solution is to upgrade to the 2014-05-14 Debian image.
Note that due to conflicting pin use, the Robotics Cape installer must disable HDMI functions. Since we

typically use robots in a headless configuration without a display, this is generally not an issue. After installing
the Robotics Cape and restarting, you can confirm that HDMI is disabled and that the new cape is loaded
into a slot.

3.3 Pin Multiplexing

While there aremany (92) pins on the BeagleBone expansion headers, there are evenmore IO channels used
by the various subsystems on the AM335x processor used on the BeagleBone. The solution to this problem
is called a pin multiplexer that lets you configure each pin to be used for one of up to 8 different functions.
Each cape that is installed must have an associated device tree overlay file installed which configures the
BeagleBone pinmultiplexer to set up the header pins for use with that particular cape. This file also configures
hardware parameters such as enabling serial ports and setting PWM frequencies.

Due to its complexity, the Robotics Cape uses almost all of the BeagleBone’s header pins. To see how the
pin multiplexer is set up with the Robotics Cape installed, download the header pin table from the Robotics
Cape documentation page.

Page 9

https://github.com/StrawsonDesign/Robotics_Cape_RevC_Documentation
https://github.com/StrawsonDesign/Robotics_Cape_RevC_Documentation

4 Circuit Design

Now that you can write and compile a “hello world” program, it’s time to start using General Purpose IO pins
to control electric circuits. Regardless of the complexity of your robotics project, it is good practice to draw up
a detailed schematic before making your wiring harness. Thorough documentation will reduce the likelyhood
of damaging components from miswiring and make repairs easier in the future.

4.1 LED Kit Components

You will design three circuits in this chapter and you are provided with a kit containing the following parts
which will allow you to construct and test them.These parts are meant to be reused. Be careful to push ICs
square into the breadboard. Please leave ICs in the breadboard to protect pins and return the kit after the
assignment is complete.

1. 4x7-segment LED Display datasheet
2. 270 Ohm resistor DIP datasheet
3. Logic level Converter datasheet
4. 4 MOSFETs datasheet
5. MAX7221 LED Driver datasheet
6. 30k Ohm Resistor
7. Solderless Prototyping Breadboard
8. 60-Pack of Jumper Cables

4.2 Installing EAGLE and Library

We will use the free version of the EAGLE schematic and PCB layout tool because of it’s wide use in the
hobbyist and open-source community which has resulted in a wide array of freely available libraries. Once
you’ve downloaded and set up the software, open it up and you should be greeted with the main control
panel. I highly recommend this video tutorial by Jeremy Blum to get you started.

Page 10

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Components/LED/1LEDREDCC.pdf
http://www.bourns.com/data/global/PDFs/4100R.pdf
https://www.sparkfun.com/products/11978
http://www.fairchildsemi.com/ds/2N/2N7000.pdf
http://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
http://www.cadsoftusa.com/download-eagle/?language=en
https://www.youtube.com/watch?v=1AXwjZoyNno&feature=youtu.be

Included with this assignment is an EAGLE library containing the parts included in your LED kit, a blank
BeagleBone cape, and a few of my favorite things. Please download BeagleBoneRobotics.lbr to a new
directory for this exercise. Then from the EAGLE control panel, click Options -> Directories and add the
location where you put the library file. If you just want to include a library without adding its directory to the
search path, then in the menu bar at the top click Library -> Use then select the library manually. However
this method requires you to “Use” the library each time you open EAGLE.

4.3 Modifying the Sample Schematic

Now download the sample schematic SampleSchematic.sch to the same directory and open this file from
the control panel.

Modify the sample schematic to have your name. To do this, select the info tool on the left and left-click
on the green text you wish to change. A properties window for whichever text or component you selected
will appear that resembles the one below. Finally save as a new file name.

Page 11

http://strawsondesign.com/files/BeagleBoneRobotics.lbr
http://strawsondesign.com/files/SampleSchematic.sch

4.4 Exercise: Driving One LED Digit

With the BeagleBoneRobotics library added, click and add component tool and browse through the list of
libraries to find the components included with your LED kit. Add the BeagleBone outline and 8-resistor DIP
to your schematic.

Page 12

Now check the LED display datasheet to find the forward voltage drop of each LED and the peak contin-
uous current. Write these details as a note in your schematic. Now draw wires such that the first LED digit
is controlled by 8 parallel GPIO pins. Add comments, names, and values where appropriate.

We must now choose GPIO channels to control the LEDs. To avoid configuring the pin multiplexer your-
self, pick pins which are already configured by the Robotics Cape device tree overlay to be GPIO outputs.
This information is in the header pin table here. Avoid input pins such as P8.9, P8.10, and P9.25 as these
are configured as inputs with interrupts and are therefore resources reserved by the operating system. The
motor H-Bridge direction pins (MDIR) are good choices as you will not be using the motor libraries for this
exercise.

I highly suggest using nets instead of just wires to keep your schematic clean. For help on using EAGLE
tools such as nets I point you again to Jeremy Blum’s video tutorial.

Stop and save. Take a screenshot of this circuit for submission. It should look similar to this, but with
different header pin connections.

Page 13

https://github.com/StrawsonDesign/Robotics_Cape_RevC_Documentation
https://www.youtube.com/watch?v=1AXwjZoyNno&feature=youtu.be

4.5 Exercise: Multiplexing 4 Digits

See howwiring up all 4 digits would result in a mess if you had to use 8 wires for each digit? Now try designing
a circuit to multiplex the 8 GPIO signals across all 4 digits. This is a common cathode display: all 8 LEDs in
each digit share a cathode which is accessible on pins D1-D4. The 8 segment pins are connected to every
digit. Therefore, if more than 1 cathode is grounded while a segment pin is driven, the same current must be
shared between multiple digits and they will dim. This is fine.

Now make a new schematic file with a circuit to drive all 4 digits using the 4 FETS as current sinks
connected to ground. Don’t forget to refer to the datasheets and take a screen capture of your schematic.

4.6 Exercise: Wiring an IC with SPI

Finally, we are going to replace all 12 signal wires from the beaglebone with just 3 signal wires using a Serial
Peripheral Interface. Create a new symbol in the BeagleBone Robotics library titled “MAX7221” and draw a
complete symbol using the datasheet as a reference. If you would like, you can create a package and device
too, but this is not necessary as you are only making a schematic for this assignment. Insert that symbol into
a new schematic and design a circuit to control the MAX7221 and display with a Beaglebone over SPI.

Page 14

In your schematic, connect the MAX7221 to the BBB using the SPI1 CLK and MOSI pins. Since the BBB
operates on a 3.3V logic level and the LED driver runs on a 5V logic level, use the two TX channels on the
Sparkfun logic level converter to connect the Clock and MOSI lines. As with many 5v devices, 3.3v is just
enough to register a logic level HIGH. Since the slave select line is less timing-sensitive than the serial data
lines, we can connect directly from the BeagleBone to the MAX7221. Consult the header pin table again to
find the pins used for SPI.

To give 5v to the display driver and high voltage side of the logic level converter, use pin P9.7. To provide
3.3V to the low volt side of the logic level converter, use pin P9.3.

When you are confident in your schematics, save and screen capture the circuit for submission. We will
move on to controlling the display with these three circuits with userspace programs next chapter.

Page 15

5 GPIO and Controlling Hardware with File IO

When controlling hardware such as GPIO and serial ports on a microprocessor, we have to use software
to control the appropriate hardware control registers that exist in the microprocessor. To simplify life, the
operating system on your BeagleBone uses drivers to expose these hardware interfaces as easy to use files
in the file system. Here we will show how to control various GPIO hardware both from the command line and
with software written in C.

5.1 Exporting GPIO Pins with the Command Line

There are three GPIO subsystems in the AM335x processor in your BeagleBone black, and they are all
controlled with one GPIO driver. First let’s pick a pin to play with. Opening the Robotics Cape header pin
table again, you will find that the green led is connected to header pin 8. This corresponds to gpio2[3] which
means gpio subsystem number 2 and channel 3 on that subsystem. This information can be found in the
header pin table. The GPIO driver designates a single number to that pin for simplicity. Since there are 32
pins per GPIO subsystem and 4 subsystems (0,1,2,3), we multiply the subsystem number by 32 and add the
channel number. For this pin we have 2*32 + 3 = 67.

Now we can navigate at the command line to the gpio driver directory and export the pin to enable it.

root@beaglebone:~# cd /sys/class/gpio
root@beaglebone:/sys/class/gpio# echo 67 > export

Now there is a /sys/class/gpio/gpio67 directory and we can see all of the files to control that pin. You may
get the error "-bash: echo: write error: Device or resource busy" if the pin is in use by the operating system
or another program such as one of the Robotics Cape example programs.

root@beaglebone:/sys/class/gpio# cd gpio67
root@beaglebone:/sys/class/gpio/gpio67# ls
active_low direction edge power subsystem uevent value

Now lets configure it for output and turn on the pin. If you have the robotics cape installed or connect an
LED with a current limiting resistor to this pin, it should turn on.

root@beaglebone:/sys/class/gpio/gpio67# echo out > direction
root@beaglebone:/sys/class/gpio/gpio67# echo 1 > value

If you wish to use the GPIO pin as an input to read the state of a digital signal connected to that pin, you
can set the direction to ’in’ and then read the value file instead of writing to the value file.

root@beaglebone:/sys/class/gpio/gpio67# echo in > direction
root@beaglebone:/sys/class/gpio/gpio67# cat value
1

Page 16

5.2 Controlling GPIO with C code

The cat and echo commands used before to control the hardware driver from the command line can be
translated directly to file read and write commands in C code. To try this out, copy the following program into
a new file on the your BeagleBone.

// gpio_file_io.c
// illuminates an LED connected to a gpio pin with only file IO
// use expansion header P8, pin8
// GPIO2_3 designated as gpio 67
#include <stdio.h>
#include <stddef.h>
#include <time.h>
#define PIN 67
int main (){

// file handles
FILE *ofp_export;FILE *ofp_gpio67_value;FILE *ofp_gpio67_direction;
// export gpio pin for use
ofp_export = fopen("/sys/class/gpio/export", "w");
if(ofp_export == NULL){

printf("Unable to open export.\n");
return -1;

}
fseek(ofp_export, 0, SEEK_SET); // seek to beginning of file
fprintf(ofp_export, "%d", PIN); // write the pin number to export
fflush(ofp_export); // finish writing file
// configure gpio for writing
ofp_gpio67_direction = fopen("/sys/class/gpio/gpio67/direction", "w");
if(ofp_gpio67_direction==NULL){

printf("Unable to open gpio67_direction.\n");
return -1;

}
fseek(ofp_gpio67_direction, 0, SEEK_SET); // seek to beginning of file
fprintf(ofp_gpio67_direction, "out"); // configure as output pin
fflush(ofp_gpio67_direction); // write file
// Open file pointer for writing the value
ofp_gpio67_value = fopen("/sys/class/gpio/gpio67/value", "w");
if(ofp_gpio67_value == NULL){

printf("Unable to open gpio67_value.\n");
return -1;

}
fseek(ofp_gpio67_value, 0, SEEK_SET);
// start blinking loop
printf("blinking LED\n");

Page 17

int i = 0;
while(i<10){

// turn pin on
fprintf(ofp_gpio67_value, "%d", 1);
fflush(ofp_gpio67_value);
printf("ON\n");
sleep(1);
// turn pin off
fprintf(ofp_gpio67_value, "%d", 0);
fflush(ofp_gpio67_value);
printf("OFF\n");
i++; // increment counter
sleep(1);

}
//close all files
fclose(ofp_export);
fclose(ofp_gpio67_direction);
fclose(ofp_gpio67_value);
return 1;

}

To compile, you can just use GCC as follows.

root@beaglebone:~# gcc gpio_file_io.c -o gpio
root@beaglebone:~# ./gpio
blinking LED
ON
OFF
...

To clean up this code, the Robotics Cape library includes simple GPIO commands for exporting, reading,
and writing. The equivalent code is as follows.

// gpio_library_example.c
// illuminates an LED connected to a gpio pin with gpio library functions
// use expansion header P8, pin8
// GPIO2_3 designated as gpio 67
#include <robotics_cape.h>
#define PIN 67
int main (void){

// export gpio pin for use
if(gpio_export(PIN)){

printf("Unable to open export.\n");
return -1;

}
// set pin for output
if(gpio_set_dir(PIN, OUTPUT_PIN)){

Page 18

printf("Unable to open gpio67_direction.\n");
return -1;

}
// start blinking loop
printf("blinking LED\n");
int i = 0;
while(i<10){

// turn pin on
gpio_set_value(PIN, 1);
printf("ON\n");
sleep(1);
// turn pin off
gpio_set_value(PIN, 0);
printf("OFF\n");
i++; // increment counter
sleep(1);

}
return 1;

}

To compile this code, you need to have the Robotics Cape package installed and tell the GCC linker to
include the robotics cape library as follows.

root@beaglebone:~# gcc gpio_library_example.c -lrobotics_cape -o gpio
root@beaglebone:~# ./gpio
blinking LED
ON
OFF
...

5.3 Exercise: Drive a Digit

Now wire up the single digit schematic from exercise 4.4. Using the gpio functions in the Robotics Cape
library, write a program to make a single digit sequence from 0-9 and repeat again. Take a picture of one
number being displayed to include with your code submission.

5.4 Exercise: Multiplex 4 Digits

Now add the 4 mosfets to your breadboard to complete your second circuit from exercise 4.5. Now you
can display multiple digits by individually turning on the 4 mosfets. This is a process called multiplexing. By
swapping between which digit is turned on very quickly, we can make it look like all 4 segments are displaying
their own number, even though only one is turned on at a time. I suggest writing to the GPIO pins connected
to the 8 anodes of the digit you wish to display, then turning on the corresponding mofset via GPIO to let
current flow from the common cathode of that digit. Then wait for roughly 5ms before writing to the next

Page 19

digit and rotate between the 4 digits every 20ms. This is fast enough that your eyes should not perceive the
flashing.

Write a second program which displays a timer with a resolution of one tenth of a second. Take a picture
with all 4 digits displaying something with a decimal point indicating the tenths digit.

Page 20

6 Serial Peripheral Interface

6.1 SPI device tree overlay

To enable the SPI driver and multiplex the SPI pins correctly, you must first make sure the appropriate lines
are included in a device tree overlay and loaded into a slot with the cape manager. This is all done for you
in the Robotics Cape installer. However, if you are curious to see what needs to be done, here is the device
tree overlay provided by the beagleboard open source project to enable SPI1. More device tree overlays can
be found here.

/*
* Copyright (C) 2013 CircuitCo
*
* Virtual cape for SPI1 on connector pins P9.29 P9.31 P9.30 P9.28
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*//dts-v1/;

/plugin/;
/ {

compatible = "ti,beaglebone", "ti,beaglebone-black";
/* identification */part-number = "BB-SPI1";
version = "00A0";
/* state the resources this cape uses */exclusive-use =

/* the pin header uses */"P9.31", /* spi1_sclk */"P9.29", /* spi1_d0 */"P9.30", /* spi1_d1 */"P9.28", /* spi1_cs0 */// "P9.42", /* spi1_cs1 *//* the hardware ip uses */"spi1";
fragment@0 {

target = <&am33xx_pinmux>;
__overlay__ {

/* default state has all gpios released and mode set to uart1 */bb_spi1_pins: pinmux_bb_spi1_pins {
pinctrl-single,pins = <

0x190 0x33 /* mcasp0_aclkx.spi1_sclk, INPUT_PULLUP | MODE3 */

Page 21

https://github.com/beagleboard/devicetree-source/blob/master/arch/arm/boot/dts

0x194 0x33 /* mcasp0_fsx.spi1_d0, INPUT_PULLUP | MODE3 */0x198 0x13 /* mcasp0_axr0.spi1_d1, OUTPUT_PULLUP | MODE3 */0x19c 0x13 /* mcasp0_ahclkr.spi1_cs0, OUTPUT_PULLUP | MODE3 */// 0x164 0x12 /* eCAP0_in_PWM0_out.spi1_cs1 OUTPUT_PULLUP | ←↩
MODE2 */>;

};
};

};
fragment@1 {

target = <&spi1>; /* spi1 is numbered correctly */__overlay__ {
status = "okay";
pinctrl-names = "default";
pinctrl-0 = <&bb_spi1_pins>;
#address-cells = <1>;
#size-cells = <0>;
channel@0 {

#address-cells = <1>;
#size-cells = <0>;
compatible = "spidev";
reg = <0>;
spi-max-frequency = <16000000>;
spi-cpha;

};

channel@1 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "spidev";
reg = <1>;
spi-max-frequency = <16000000>;

};
};

};
};

Note here that the SPI bus frequency is set to 16Mhz in this device tree overlay. This is likey too fast for
many devices, therefore the equivalent lines in the Robotics Cape overlay set the bus frequency to 1Mhz to

Page 22

improve compatibility and reduce bus errors over long or noisy signal wires.

6.2 Sending through SPI

Sending packets out of a serial port can be done similarly to controlling GPIO pins. It is possible to send SPI
packets by writing to the /dev/spidev1.0 device through the file system. Like with writing to GPIO pins, this
can be done with the echo command line program, or in C code with fprintf() or write(). However, to have
further control of the phase an speed of the serial clock, we can use the ioctl.h linux library and spidev.h to
control the BeagleBone’s SPI driver.

// test_max7221.c
// 2014 James Strawson
// Sample code to print "143C" to a display using MAX7221 IC
// Requires SPI1 to be set up in the device tree
// And the Robotics Cape library installed
// Connections
// Two signals through Logic Level Converter
// Clock SPI1_SCK -> P9_31
// MOSI SP1_MOSI -> P9_30
// CS Chip select aka SS slave select
// directly from beaglebone to MAX7221
// SP1_SS1 -> P9_28 gpio3.17 gpio113
#include <robotics_cape.h>
#include <linux/spi/spidev.h>
#include <sys/ioctl.h>
#define ARRAY_SIZE(array) sizeof(array)/sizeof(array[0])
#define SS_PIN 113 //gpio number of slave select
int fd; // file pointer to SPI device
struct spi_ioc_transfer xfer[1]; // io transfer struct
unsigned char wr_buf[2], rd_buf[1]; //IO buffers, only write used here
int status; // return status of spi transfer call
int write_max7221(unsigned char byte0, unsigned char byte1){

memset(xfer, 0, sizeof xfer); // clean out buffers
memset(wr_buf, 0, sizeof wr_buf);
wr_buf[0] = byte0;
wr_buf[1] = byte1;
xfer[0].tx_buf = (unsigned long) wr_buf;
xfer[0].len = 2;
xfer[0].speed_hz = 2000000; //2Mhz
xfer[0].bits_per_word = 8;
// select slave and write bytes
gpio_set_value(SS_PIN, LOW); //select slave
status = ioctl(fd, SPI_IOC_MESSAGE(1), xfer);
if (status < 0) {

printf("SPI_IOC_MESSAGE_FAILED");
return -1;

}

Page 23

gpio_set_value(SS_PIN, HIGH);
usleep(500); //allow IC to clear input buffer
return 0;

}
int main(){

//open SPI device
fd = open("/dev/spidev1.0", O_RDWR);
if (fd<=0) {

printf("Device not found\n");
exit(1);

}
// set write mode of SPI
int spi_mode = SPI_MODE_3;
status = ioctl(fd, SPI_IOC_WR_MODE, &spi_mode);
if (status == -1){

printf("can’t set spi mode");
return -1;

}
// export slave select pin as output
if(gpio_export(SS_PIN)){

printf("failed to export slave select pin\n");
return -1;

}
gpio_set_dir(SS_PIN, OUTPUT_PIN);
// start with slave deselected briefly
gpio_set_value(SS_PIN, HIGH);
usleep(500000);
// wake unit up from sleep
if(write_max7221(0x0C, 0x01) < 0){

printf("failed to write, check SPI is enabled in device tree overlay\n");
}
// turn on first 4 digits only
write_max7221(0x0B, 0x03);
// set decoding font B for the first 3 digits
write_max7221(0x09, 0x07);
// write "143" to first 3 digits using font B decoding
write_max7221(0x01, 0x01);
write_max7221(0x02, 0x04);
write_max7221(0x03, 0x03);
// write "C" to the last digit by manually selecting segments
// each 1 is a lit segment
write_max7221(0x04, 0b001001110);
printf("Packets Written\n");
close(fd);
return 0;

}

Page 24

Since this uses the Robotics Cape shared library, you must also include the robotics cape flag to tell the
linker to look for the installed shared library.

root@beaglebone:~# gcc max7221_test.c -lrobotics_cape -o spi
root@beaglebone:~# ./spi
Packets Written

If all was successful, you should get something like this.

Note that theMAX7221 integrated circuit is performing the samemultiplexing routine that you programmed
in exercise 5.4. However, your interface to the display is now much simpler and requires only a serial port
instead of a bundle of GPIO signal wires.

6.3 Exercise: SPI Clock

Now rewrite your timer from exercise 5.4 to use the LED driver IC instead of GPIO pins. Take a picture of the
working display to submit with your source code.

6.4 Reading through SPI

Reading registers from an IC over SPI is a little more complicated to program due to the strict timing that’s
necessary to read the incomming data from the serial buffer. The common ioctl() function in C will take care
of managing the serial buffer for you and allows you to configure the SPI driver to use a specific SPI mode
and speed as well. Here is a sample from the test adns9800 example in the Robotics Cape installer package.
The ADNS9800 is an optical mouse sensor which can be hooked up to your beaglebone and read directly
through SPI.

int adns_mode = SPI_MODE_3;
int adns_speed = 2000000; // 2 mhz max
int adns_bits = 8;
unsigned char adns_read_reg(int fd, unsigned char reg_addr){

struct spi_ioc_transfer xfer[1];

Page 25

unsigned char wr_buf[1], rd_buf[1];
int status;
memset(xfer, 0, sizeof xfer);
memset(wr_buf, 0, sizeof wr_buf);
// send adress of the register, with MSBit = 0 to indicate it’s a read
wr_buf[0] = reg_addr & 0x7f;
select_spi0_slave(0);
xfer[0].tx_buf = (unsigned long) wr_buf;
xfer[0].len = 1;
xfer[0].speed_hz = adns_speed;
xfer[0].bits_per_word = adns_bits;
status = ioctl(fd, SPI_IOC_MESSAGE(1), xfer);
usleep(100);
//read response
xfer[0].tx_buf = 0;
xfer[0].rx_buf = (unsigned long) rd_buf;
xfer[0].len = 1;
xfer[0].speed_hz = adns_speed;
xfer[0].bits_per_word = adns_bits;
status = ioctl(fd, SPI_IOC_MESSAGE(1), xfer);
usleep(1);
deselect_spi0_slave(0);
usleep(1); // wait for chip to deselect
if (status < 0) {

printf("SPI_IOC_MESSAGE_FAILED");
return -1;

}
return rd_buf[0];

}

Page 26

7 Robotics Power Management

While your beaglebone can be conveniently powered over a USB port or with a 5V power supply, we need a
more sophisticated power management system if we are to let our robots roam wirelessly. In this chapter we
will review the various voltage regulators and battery management techniques used in robotics and on your
Robotics Cape.

7.1 BeagleBone Power Restrictions

Your BeagleBone contains a Power Management Integrated Circuit (PMIC) from Texas Instruments which
contains 1.8V and 3.3V regulators along with the charging circuit for a single cell lithium battery. This PMIC
makes the decision to draw power from either the USB port or the 5VDC input which can be accessed either
by the black barrel connector on the BBB or through the VDD_5V rail accesible on header pins P9_5 and
P9_6. Unfortunately, multiple cell lithium battery packs used in robots have unregulated terminal voltages
much higher than 5V. For this reason the Robotics Cape includes a high efficiency switching voltage regulator
capable of supplying up to 2A shown here outlined in blue.

Also available near the 5V regulator are 3 test points which provide access to both the Robotics Cape’s
5V line and a regulated 3.3V rail from the BeagleBone header pins. These three vias can be populated with
0.1" header pins if you desire to use them with your robotics project. Note that while the 5V regulator is
rated to supply 2A, the BeagleBone will draw roughly 500mA under load in addition to the power used by any
USB device plugged into the BeagleBone’s USB host port. According to page 38 of the BeagleBone System
Reference Manual, the allowable current for this 3.3V rail is 500mA.

Note in the above picture that the 5V DC input jack outlined in white has a red plug installed to prevent
accidental damage to the BBB since it is the same sized connector as the 6-16V DC jack on the Robotics

Page 27

Cape. You are provided with both this safety plug and a more common 12V DC power supply to power and
charge your Robot with.

The 5V regulator on the Robotics Cape will draw power from either the 6-16V DC input outlined in red or
a 2-Cell lithium battery plugged into the JST XH balance connector. More on batteries in the next section.

7.2 Lithium Batteries and Protection

Prismatic Lithium Polymer battery packs have become the energy storage medium of choice in small robots
and remotely controlled vehicles in the hobby space due to their high energy density. To reduce cost and
weight, lithium polymer battery packs (LiPos) sold in the hobby industry do not typically have integrated
protection circuitry like you would find on a more expensive laptop battery.

If a lithium cell drops below roughly 2.5V, it begins the process of under-voltage degradation. Very quickly,
the Lithium Cobalt Oxide or Lithium Manganese Oxide will break down and release Oxygen. This results
in the very common physical symptom of puffy batteries and unfortunately permanent capacity loss. The
normal charging cutoff point is 4.2V for Lithium based cells. Charging above 4.3V can result in overheating
and further capacity loss. While fires are not likely with small batteries under 2000mAh due to lack of total
energy, be aware that Lithium fires can occur if packs are physically damaged, shorted, or overcharged.

For this reason, unprotected Lithium battery packs must be treated with care and are normally removed
from a robot to be charged on a dedicated Lithium charger with a balance connector that gives the charger
the ability to read and monitor individual cell voltages within a pack. We include 2-Cell under and over voltage
protection and a 1A charging circuit on the Robotics Cape so all you need to charge and use you robot is a
common DC power supply such as the one provided.

7.3 Robotics Cape Battery Management

Your Robotics Cape is designed to charge and protect a 2-Cell Lithium battery pack connected to the cape
with a standard 3-pin JST-XH connector. This is how you will power your BeagleBone wirelessly as well as
powering DC motors and servos directly from the cape. Once you plug in a 2-cell lithium pack you must arm
the battery protection circuit by plugging in a DC power supply to the 6-16V input jack. After a few seconds
charging will begin and the protection circuit will re-arm, enabling current to be drawn from the battery to
keep your BeagleBone powered.

To insure the charging circuit is working when a power supply is connected, examine the charging circuit
LEDs outlined in green. While charging, the CHG LED will illuminate yellow and when the pack is full the
FULL LED will illuminate green.

While charging or discharging, you can monitor the state of the battery with the 4 battery indicator LEDs
outlined in yellow. All 4 LEDs in the battery indicator will flash to indicate critical battery voltage shortly before
the battery protection circuit prevents over discharge protection of the pack.

Page 28

We suggest disconnecting the 2-Cell battery if you wish to store your robot unused for longer than a week
to prevent unnecessary discharge. However, to avoid needing to rearm the battery protection circuit, you may
leave the battery connected and simply power off your BeagleBone with the power button outlined in blue.
A momentary press of the power button next to the ethernet port will shut the Beaglebone down in roughly
4 seconds depending on what is running. It will also boot up in roughly 12 seconds with the same button.
Instead of power cycling your BeagleBone in the event of a software crash, you can use the neighboring
reset button to force restart the BeagleBone.

Page 29

8 Robotics Cape Library

Your Robotics Cape is provided with an open source installer package that sets up your BeagleBone with
libraries to use cape features along with a device tree overlay, example programs, and a startup script to
manage what programs you want your robot to run automatically. In this chapter we will outline the functions
and features available to you.

8.1 Bare Minimum

In the examples directory of the BeagleBone installer you will find over a dozen programs demonstrating
Robotics Cape functionality. You may notice that they all have a few things in common. Firstly, they all
contain a C file with the same name as the program directory. This will also be the same name as the
compiled program and is not a requirement but is considered good practice. Each example also has its own
Makefile. This is a configuration file that allows you to compile your programs with the make utility instead of
typing out long lists of linker options with GCC. Finally, you will notice that they all have README files with
a description of the program and special instructions for using it. Let’s examine the bare_minimum example
to see what needs to be included in each of your robotics projects.

// Bare Minimum Skeleton for Robotics Cape Project
// James Strawson - 2014
#include <robotics_cape.h>
int main(){

initialize_cape();
printf("\nHello BeagleBone\n");
//Keep Running until program state changes
while(get_state() != EXITING){

usleep(1000000);
}
cleanup_cape();
return 0;

}

First note the header contains the name of the program, the author, and date. This is good practice to
keep track of your programs over time or when working in a group. Next the Robotics Cape library header is
included. This header file contains most common Linux libraries and all function definitions in the Robotics
Cape library. C programming gurus will note that this include statement is in angular brackets and not in
quotation marks. This is because the Robotics Cape installer placed the Robotics Cape header file in the
/usr/include/ and the library shared object file in the /usr/lib directory so they can be accessed wherever you
place your project directory.

Next we will be sure to put the initialize_cape() function at the beginning of your main function. This
performs initialization functions such as exporting GPIO pins, configuring interrupts, initializing the PRU, and
stopping any other Robotics program which may be running to prevent conflicting use of resources. This
means that you can start any Robotics program without going through the hassle of opening the top task

Page 30

manager and manually killing background programs.
Next we print something to the console to indicate the program is alive and working and then enter the

main while loop. This loop is where you can run any ongoing routines. Be careful to give use of the processor
back to the operating system with the usleep() function, typically at the end of the loop. The standard sleep()
function only provides a resolution of one second and is not thread safe, so we used the usleep() function.

Note that the loop exists when the get_state() function call returns EXITING. EXITING is part of an enu-
merated type defined in robotics_cape.h which exists to manage the state of your program. When you press
Ctrl-C at the console to quit your program, normally the program is stopped immediately by the operating
system. When you call the initialize_cape() function, a signal handler is set up to intercept the SIGINT (Ctrl-
C) signal and changes the state variable to EXITING. This allows you to cleanly exit all of your functions and
threads if you keep them running in similar while loops. You can also call the function set_state(EXITING)
yourself to tell other threads to exit cleanly.

Finally, we see the last statement in main() before returning is the cleanup_cape() function. This will
disable the motors, PRU, and remove the lockfile indicating the program shut down cleanly. For more details
see the provided library source code robotics_cape.c.

8.2 Makefiles and Creating a New Project

To start a new project, I suggest copying the bare_minimum directory and its contents to your root directory
and renaming it to match your new project name.

root@beaglebone:~# cp -r /root/Robotics_Cape_RevC_Installer/examples/bare_minimum /←↩
root/new_project

root@beaglebone:~# cd /root/new_project
root@beaglebone:~/new_project/# mv bare_minimum.c new_project.c

Now we must rename our source code and the compiled output file names in the Makefile to match your
project.

root@beaglebone:~/new_project/# nano Makefile
#project name change to match your main c file
TARGET = new_project

TOUCH := $(shell touch *)CC := gcc
LINKER := gcc -o
CFLAGS := -c -Wall -g
LFLAGS := -lm -lrt -lpthread -lrobotics_cape
....

Take this opportunity to browse the Makefile for all of the special compiler and linker flags that are used
in building a Robotics Cape project. We use the make utility to avoid typing out all of these options ourselves

Page 31

in a GCC command.
The make utility gives us three primary commands we can use. Before compiling a project, it is optional

but advised to call the "make clean" command to delete previously compiled files. Next we call the simple
"make" command to build the project and create an executable file in the project directory.

root@beaglebone:~/new_project/# make clean
Cleanup Complete
root@beaglebone:~/new_project/# make
root@beaglebone:~/new_project/# ./new_project
Hello BeagleBone!
root@beaglebone:~/new_project/#

When you are happy that your program functions as expected, you can install it to the /usr/bin directory
so that it can be accessed from any directory.

root@beaglebone:~/new_project/# make clean
Cleanup Complete
root@beaglebone:~/new_project/# make install
root@beaglebone:~/new_project/#cd ../
root@beaglebone:~# new_project
Hello BeagleBone!
root@beaglebone:~#

Note that most of the example programs are installed by default and can be launched from anywhere for
quick testing.

8.3 Buttons and LEDs

Here we will examine two basic but commonly used Robotics Cape functions. Along with the battery indicator
and charge LEDs, the cape also includes a green and a red LED for the user to control themselves to indicate
robot function and state. There are also two buttons configured with interrupts within the operating system.
Below we demonstrate the method by which we define which functions are called when they are pressed or
released. The buttons are labeled Pause and Mode but can be used for any purpose.

// Button and LED tester for the Robotics Cape
// Pressing either button makes an LED blink
// Hold the pause button or ctrl-c to exit cleanly
// James Strawson - 2014
#include <robotics_cape.h>
int mode; // 0, 1, 2 slow medium fast blink rate
int paused; // 0 for running, 1 for paused
int toggle; // toggles between 0&1 for led blink
// Print to the console when buttons are pressed
int on_pause_press(){

Page 32

printf("pressed Pause\n");
if(get_mode_button_state() == 1){

//both buttons pressed exit cleanly
set_state(EXITING);

}
return 0;

}
int on_mode_press(){

printf("pressed mode\n");
if(get_pause_button_state() == 1){

//both buttons pressed exit cleanly
set_state(EXITING);

}
return 0;

}
// toggle paused state when button released
int on_pause_release(){

if(paused) paused=0;
else paused=1;
return 0;

}
// increment mode
int on_mode_release(){

if(mode<2)mode++;
else mode=0;
return 0;

}
int main(){

initialize_cape();
printf("\nPress mode to change blink rate\n");
printf("hold pause to exit\n");
//Assign your own functions to be called when events occur
set_pause_pressed_func(&on_pause_press);
set_pause_unpressed_func(&on_pause_release);
set_mode_pressed_func(&on_mode_press);
set_mode_unpressed_func(&on_mode_release);
// start in slow mode
mode = 0;
//toggle leds till the program state changes
while(get_state() != EXITING){

usleep(500000 - (mode*200000));if(!paused && toggle){
setGRN(LOW);
setRED(HIGH);
toggle = 0;

}
else if(!paused && !toggle){

Page 33

setGRN(HIGH);
setRED(LOW);
toggle=1;

}
}
cleanup_cape();
return 0;

}

Note that the way we set the interrupt service routines for the buttons is by passing a pointer to a function
in the same way that we can pass pointers to variable locations in memory.

8.4 Motors

Your Robotics Cape has four H-bridges with flyback diodes which draw power from the 2-Cell lithium battery
pack. They are capable of supplying 1A continuously provided there is sufficient airflow to keep them from
overheating. Check that your motors do not draw more than this at stall with a peak battery voltage of 8.4
volts. Use 2-Pin JST-ZH connectors to quickly connect to the 4 motor output connectors outlined below in
blue.

Controlling the H-bridges is done with the set_motor() function which takes in two arguments. First,
provide the integer motor channel number from 1 to 4, and a floating point value to -1 to 1 to indicate the
direction and duty cycle. The PWM frequency is configured in the Robotics Cape device tree overlay and
comes set at 40khz.

You also have control over the motor standby signal which puts the H-bridges into a lower power state
when logic level low. You should call enable_motors() before using the set_motors() function. It is also
advisable to use disable_motors() when the motors are not in use and as part of a safety shutdown routine
triggered by the pause button. Also available is the kill_pwm() command to stop all 4 PWM generators.

// test_motors.c
// Moves all 4 motors forward and back
// James Strawson - 2014
#include <robotics_cape.h>
int main(){

initialize_cape();
// bring H-bridges of of standby

Page 34

enable_motors();
setGRN(HIGH);
setRED(HIGH);
int i;
// Drive all motors forward at %30 duty cycle
for(i=1;i<=4;i++){

set_motor(i,.3);
}
printf("\nAll Motors Forward\n");
sleep(2);
// Drive all motors back at %30 duty cycle
for(i=1;i<=4;i++){

set_motor(i,-.3);
}
printf("All Motors Reverse\n");
sleep(2);
kill_pwm(); // set all duty cycles to 0
disable_motors(); //put H-bridges into standby
printf("All Motors Off\n\n");
cleanup_cape();
return 0;

}

8.5 Encoders

While it is possible to count quadrature encoders in software with interrupt service routines, your BeagleBone
has three hardware encoder counters called eQEP modules which are part of the PWM subsystems. To
accelerate reading of the eQEP counters, the Robotics Cape library uses the C command mmap to directly
access the PWM subsystem registers instead of using a kernel driver. This is one of the reasons you must
run as the root user or with root privileges to use the robotics cape library.

The three encoder channels are broken out to three connectors outlined here in blue. Each of these can
be used with a 4-pin JST-SH connector like the ones provided. Pin 1 of these connectors is indicated with
a dot. Checking the Robotics Cape schematic available here we can see that pin 1 is ground. This is a
convention common among the Robotics Cape connectors. The entire pinout is as follows.

1. Ground (brown) 2. 3.3V (Red) 3. Signal A (Orange) 4. Signal B (Yellow)
You will also notice from the schematic that 1k Ohm pullup resistors are installed on the signal pins. This

is because most small optical and hall effect encoder modules require strong pullup resistors to operate and
are therefore included for convenience.

Page 35

https://github.com/StrawsonDesign/Robotics_Cape_RevC_Documentation

Reading and setting the encoder counters is straightforward. Here is a sample program to read the current
position. This is a pre-installed program and can be called from anywhere for quick testing of your encoder
hardware.

// test_encoders.c
// Prints out current encoder ticks
// James Strawson - 2014
#include <robotics_cape.h>
int main(){

initialize_cape();
// reset encoder counters to 0
set_encoder_pos(1, 0);
set_encoder_pos(2, 0);
set_encoder_pos(3, 0);
setGRN(HIGH);
setRED(HIGH);
printf("\n\nRaw data for encoders 1,2,3\n");
while(get_state() != EXITING){

printf("\r%3li %3li %3li ", get_encoder_pos(1),get_encoder_pos(2),get_encoder_pos(3)←↩
);

fflush(stdout);
usleep(50000);

}
cleanup_cape();
return 0;

}

Page 36

8.6 IMU

Your robotics cape comes with an Invensense MPU-9150 9-axis inertial measurement unit , a popular sensor
among hobbyists and roboticists. This sensor contains sets of three orthogonal accelerometers, gyroscopes,
and magnetometers which allow us to estimate the robot’s orientation in space. Furthermore, the MPU-9150
contains a small microprocessor which Invensense call their Digital Motion Processor or DMP for short.
This microprocessor continuously runs digital low and high pass filters on the accelerometer and gyroscope
signals respectfully in addition to estimating orientation which can be read directly over an I2C bus and then
interpreted as either a Quaternion vector or as Euler angles.

Since this sensor data is commonly used as part of a discrete time feedback controller, we provide in the
Robotics Cape library a simple method for configuring the DMP to sample sensors at a constant rate. This
offloads the timing of the discrete controller from the operating system to the DMP and allows you to set an
interrupt service routine to be called by the DMP as soon as the sensors have been sampled. This ensures
consistent timing and minimal sensor latency.

Here is the source code for the built in test_imu function which displays Euler angles in degrees and raw
discretized readings from the gyroscope ADC. Note that the DMP is capable of 5-200 hz sample rate.

// Sample Code for testing MPU-9150 operation
// Takes in an integer to use as sample rate.
// Valid range: 5-200
//
// James Strawson - 2014
#include <robotics_cape.h>
// This is the fastest rate the DMP will do
#define DEFAULT_SAMPLE_RATE 200
// IMU interrupt service routine
int print_imu_data(){

mpudata_t mpu; //struct to read IMU data into
memset(&mpu, 0, sizeof(mpudata_t)); //make sure it’s clean before starting
if (mpu9150_read(&mpu) == 0) {

printf("\r");
printf("X: %0.1f Y: %0.1f Z: %0.1f ",
mpu.fusedEuler[VEC3_X] * RAD_TO_DEGREE,
mpu.fusedEuler[VEC3_Y] * RAD_TO_DEGREE,
mpu.fusedEuler[VEC3_Z] * RAD_TO_DEGREE);
printf("Xg: %05d Yg: %05d Zg: %05d ",
mpu.rawGyro[VEC3_X],
mpu.rawGyro[VEC3_Y],
mpu.rawGyro[VEC3_Z]);
// printf("Xa: %05d Ya: %05d Za: %05d ",
// mpu.calibratedAccel[VEC3_X],
// mpu.calibratedAccel[VEC3_Y],
// mpu.calibratedAccel[VEC3_Z]);
// printf("Xm: %03d Ym: %03d Zm: %03d ",

Page 37

// mpu.calibratedMag[VEC3_X],
// mpu.calibratedMag[VEC3_Y],
// mpu.calibratedMag[VEC3_Z]);
// printf("W: %0.2f X: %0.2f Y: %0.2f Z: %0.2f ",
// mpu.fusedQuat[QUAT_W],
// mpu.fusedQuat[QUAT_X],
// mpu.fusedQuat[QUAT_Y],
// mpu.fusedQuat[QUAT_Z]);
fflush(stdout);

}
return 0;

}
// main function declaration to accept command line arguments
int main(int argc, char *argv[]){int sample_rate;

// uncomment desired equilibrium orientation
signed char orientation[9] = ORIENTATION_FLAT;
//signed char orientation[9] = ORIENTATION_UPRIGHT;
// If the user gave no arguments, use default rate
if (argc==1){

sample_rate = DEFAULT_SAMPLE_RATE;
}
// If the user gave a valid sample rate argument, use that
else{

sample_rate = atoi(argv[1]);
if((sample_rate>MAX_SAMPLE_RATE)||(sample_rate<MIN_SAMPLE_RATE)){

printf("sample rate should be between %d and %d\n", MIN_SAMPLE_RATE,←↩
MAX_SAMPLE_RATE);

return -1;
}

}
// start cape and imu interrupt handler
initialize_cape();
initialize_imu(sample_rate, orientation);
set_imu_interrupt_func(&print_imu_data);
// now just wait, print_imu_data will run until closed
while (get_state() != EXITING) {

usleep(1000000);
}
cleanup_cape();
return 0;

}

Note that this will print out angles of roughly 0 degrees when the BeagleBone and cape sit flat on a table.
This is because the default orientation matrix (identity) preserves the cartesian coordinate system visible on
the Robotics Cape. You may select the upright orientation matrix which reverses the Z and Y axis to provide
zero Euler angles when upright with the ethernet port pointed towards the ceiling.

Page 38

You may notice that the gyroscope readings are not centered around zero. To remedy this, call the
installed calibrate_gyro function from the command line. This will sample the gyro for a second and save
the offsets to your /root/cape_calibration directory to be used to calibrate the gyro on subsequent calls to the
initialize_imu() function.

Page 39

9 Balancing BeagleMiP

9.1 BeagleMiP Assembly

Included in your BeagleMiP kit are all of the components necessary to make your BeagleBone balance.
Open your kit and inspect the following components.

1. Gearbox unit with motors and wheels attached (1)
2. Optical encoder boards (2)
3. Robotics Cape (1)
4. 2-Pin JST ZH Pigtails (2)
5. 4-Pin JST SH Pigtails (2)
6. 2-Cell LiPo Battery (1)
7. 12v 1A DC Power Supply
8. Barrel Jack Plug (1)
9. Chassis (1)
10. 4-40 x 3/8” Screws (4)

Page 40

First disassemble the powertrain unit by removing the 8 screws holding the gearboxes in. You may keep
the wheels installed.

Now that you have access to the motor terminals, trim one of the 2-pin pigtails and one of the 4-pin pigtails
to roughly 45mm for the front motor and encoder. Then trim the remaining two pigtails to roughly 95mm for
the rear motor and encoder.

Page 41

Strip and tin the pigtail ends to prepare them for soldering. Also tin the motor terminals. Don’t strip off
more than 1.5mm of insulation as the insulation will shrink to expose more wire under heat. Carefully solder
the motor wires on matching the orientation below. Also make sure that the red wires go to the + terminal of
the motors.

With the soldering iron still hot, solder the encoder boards. The brown wire should go to the terminal
labeled GND, the rest follow in order.

Now put the powertrain unit back together with wires and press the encoder boards in to match the
orientation in the following picture.

Page 42

Use two of the provided screws to mount the bracket to the top of the powertrain unit.

Carefully bend the battery leads back with the thicker leads pulled towards the label like the following
picture.

Page 43

Now place the battery into it’s slot and capture it in place by installing your BeagleBone with the remaining
two screws. Also install the provided barrel jack plug into the BeagleBone’s 5V DC input.

Now slide the yellow XT60 connector from the top down into the clip on the back side of the BeagleMiP
bracket.

Page 44

Finally plug in the Robotics Cape and connectors. Note that your BeagleBone will not turn on immediately
after connecting the battery. You must briefly connect the included 12V DC power supply to the Robotics
Cape to arm the battery protection circuit.

We suggest connecting the short leads coming from the left motor and encoder to the M1 and E3 headers.
Then connect the longer leads from the right motor to the M4 and E2 headers.

Page 45

9.2 BeagleMiP Modeling

Referring to Example 17.6 Final Equations of Motion for the MIP are as follows.

(mrRL cos θ)φ̈+ (Ir +mrL
2)θ̈ = mrgL sin θ − τ (1)

(Iw + (mr +mw)R2)φ̈+ (mrRL cos θ)θ̈ = mrRLθ̇
2 sin θ + τ (2)

You will notice these are functions of torque, whereas we wish to design a controller that outputs a PWM
duty cycle to our motors. Therefore we must also include the dynamics of the motors themselves. We can
reasonably model a DC motor’s output torque as a function of it’s speed.

τ = s̄ ∗ u− b ∗ ω − ζ ∗ ω (3)

Where:
s̄ = ηkγV

Res = StallTorque

b = η(kγ)2

Res = DampingCoefficient

ζ = k2

R = viscousfriction

η = Motor Efficiency
k = Motor Constant (Torque Constant)
γ = Gear Reduction
V = Voltage
Res = Resistance
ω = motor speed (φ̇− θ̇)
u = Motor Input (value between -1 and 1)

Your assembled BeagleMiP has roughly the following physical properties.

1. Encoder disks have 15 slots and therefore provide a resolution of 60 counts per motor revolution.
2. Motors have free run speed of 1760 rad/s and stall torque of 0.003Nm at 7.4V.
3. Motors are connected to the wheel with a 35.57:1 gearbox.
4. The motor armature has inertia 3.6E-8 Kg*m2.
5. Wheels have a radius of 34mm and have mass 27g.
6. Total assembled MiP has a mass of 263g.
7. MiP center of mass is 36mm above the wheel axis.
8. MiP body inertia is 0.0004 Kg*m2 about the wheel axis.

Remember that you must account for the torque and inertia of both motors in your MiP model. Also note
that when estimating the inertia of the wheels and gearbox, you must multiply the motor armature inertia by
the square of the gearbox ratio before summing with the wheel inertia. You may treat the wheels as solid
disks when estimating their inertia.

Page 46

9.3 Exercise: Stabilizing Body Angle

Using the physical properties given above and the equations of motion provided in example 17.6 of Numerical
Renaissance, develop a model G1(s) as a transfer function from duty cycle of the motors to angle theta of the
MiP body in Radians. Now design a stabilizing transfer function D1(s) to keep MiP upright. I suggest plotting
the angle of the system as the MiP falls over from a small angle with no input to the motors as a sanity check
to make sure your unstable transfer function models the speed at which you predict MiP will fall over.

Submit the following:
1. Transfer function G1(s) from motor duty cycle to angle theta.
2. Plot of the MiP angle Theta as it falls over with time scale in seconds at the bottom and angle in radians

on the left.
3. Your design for a stabilizing controller D1(s).
4. Bode and Nyquist plots of the open-loop system G1(s)*D1(s) indicating phase margin.
5. Discrete time equivalent controller D1(z) along with the equivalent difference equation.
6. BeagleBone C-code implementing your controller.

9.4 Exercise: Stabilizing Wheel Position

You may notice that although your controller D1 keeps your MiP upright, it still wants to drive away. Now
design a second controller, D2, to stabilize the wheel position Phi. Since the dynamics of Theta and Phi are
very different, you may use the successive loop closure method described in section 18.3.4 of Numerical
Renaissance.

You may initially design the controller D2 assuming the inner loop has a constant gain of 1. This is to
say that we assume the feedback of D1(s)*G1(s) is sufficiently fast that we treat it as 1 for the purpose of
simplifying the design of D2 at a much slower timescale. When you think you have a stabilizing controller,
include your model for G1(s) and controller D1(s) to check performance. You may need to add a prescaler P
to the output of your controller D2(s) if thee feedback of G1(s)*D1(s) has steady state gain not equal to 1. With
the entire successive loop closure system modeled in Matlab, plot the step response for a unit step in wheel
position. This should model the MiP wheels moving forward one radian. You should observe non-minimum
phase behavior where the wheels must roll backwards briefly before rolling forward.

Submit the following in a single PDF.

1. Your model for G2(s) and controller D2(s)
2. Nyquist plot demonstrating stability of outer loop with inner loop gain of 1
2. Continuous time step response assuming inner loop gain of 1
3. Continuous time step response with your G1(s) and D1(s) inner loop model included
4. Discrete time transfer function D2(z)
5. Difference equation for D2(z)
6. MiP Balancing code.
Also include a video with your email submission demonstrating balancing performance.

Page 47

	Introduction
	Your BeagleBone's Operating System
	Flashing Your BeagleBone to a Clean Image

	Connecting and Communicating With Your BeagleBone
	Network over USB
	SSH
	SFTP
	Ethernet
	WiFi
	Exercise: Hello World

	Capes
	Slots
	Exercise: Installing the Robotics Cape
	Pin Multiplexing

	Circuit Design
	LED Kit Components
	Installing EAGLE and Library
	Modifying the Sample Schematic
	Exercise: Driving One LED Digit
	Exercise: Multiplexing 4 Digits
	Exercise: Wiring an IC with SPI

	GPIO and Controlling Hardware with File IO
	Exporting GPIO Pins with the Command Line
	Controlling GPIO with C code
	Exercise: Drive a Digit
	Exercise: Multiplex 4 Digits

	Serial Peripheral Interface
	SPI device tree overlay
	Sending through SPI
	Exercise: SPI Clock
	Reading through SPI

	Robotics Power Management
	BeagleBone Power Restrictions
	Lithium Batteries and Protection
	Robotics Cape Battery Management

	Robotics Cape Library
	Bare Minimum
	Makefiles and Creating a New Project
	Buttons and LEDs
	Motors
	Encoders
	IMU

	Balancing BeagleMiP
	BeagleMiP Assembly
	BeagleMiP Modeling
	Exercise: Stabilizing Body Angle
	Exercise: Stabilizing Wheel Position

